Infestation and hydraulic consequences of induced carbon starvation.
نویسندگان
چکیده
Drought impacts on forests, including widespread die-off, are likely to increase with future climate change, although the physiological responses of trees to lethal drought are poorly understood. In particular, in situ examinations of carbon starvation and its interactions with and effects on infestation and hydraulic vulnerability are largely lacking. In this study, we conducted a controlled, in situ, repeated defoliation experiment to induce carbon stress in isolated trembling aspen (Populus tremuloides) ramets. We monitored leaf morphology, leaves per branch, and multitissue carbohydrate concentrations during canopy defoliation. We examined the subsequent effects of defoliation and defoliation-induced carbon stress on vulnerability to insect/fungus infestation and hydraulic vulnerability the following year. Defoliated ramets flushed multiple canopies, which coincided with moderate drawdown of nonstructural carbohydrate reserves. Infestation frequency greatly increased and hydraulic conductivity decreased 1 year after defoliation. Despite incomplete carbohydrate drawdown from defoliation and relatively rapid carbohydrate recovery, suggesting considerable carbohydrate reserves in aspen, defoliation-induced carbon stress held significant consequences for vulnerability to mortality agents and hydraulic performance. Our results indicate that multiyear consequences of drought via feedbacks are likely important for understanding forests' responses to drought and climate change over the coming decades.
منابع مشابه
The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees
Climate-induced forest die-off is widespread in multiple biomes, strongly affecting the species composition, function and primary production in forest ecosystems. Hydraulic failure and carbon starvation in xylem sapwood are major hypotheses to explain drought-induced tree mortality. Because it is difficult to obtain enough field observations on drought-induced mortality in adult trees, the curr...
متن کاملPine and mistletoes: how to live with a leak in the water flow and storage system?
The mistletoe, Viscum album, living on Scots pine (Pinus sylvestris) has been reported barely to regulate its transpiration and thus heavily to affect the gas exchange of its host. The extent of this mistletoe effect and its underlying mechanism has, so far, only been partially analysed. In this study, pine branches with different mistletoe infestation levels were investigated by sap flow gauge...
متن کاملBalancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine
Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their crit...
متن کاملMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed ...
متن کاملHow do trees die? A test of the hydraulic failure and carbon starvation hypotheses
Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 159 4 شماره
صفحات -
تاریخ انتشار 2012